Lompat ke konten Lompat ke sidebar Lompat ke footer

Ilmu Alamiah Dasar - Materi Dan Energi

MATERI DAN ENERGI

A.        Materi
Dunia benda terdiri atas materi dan energi. Tubuh organisme dibangun oleh materi dan hidupnya bergantung pada energi. Tanah, air, udara, tumbuhan, dan hewan, atau pendeknya semua makhluk yang hidup dan tidak hidup tersusun atas materi.
Materi didefinisikan sebagai sesuatu yang mempunyai masa yang menempati ruang.
Udara tersusun atas gas-gas yang tidak dapat dilihat, tetapi dapat dibuktikan adanya. Dengan mengibaskan sehelai kertas, kita dapat merasakan adanya angin. Angin adalah udara yang bergerak. Walau udara amat ringan, tetapi dapat dibuktikan bahwa udara memiliki masa. Ikatkan seutas tali tepat pada tengah-tengah sebatang kayu. Pada kedua ujung kayu itu masing-masing gantungkanlah sebuah balon  yang  sudah  ditiup  dan  yang  belum  ditiup  pada  ujung  yang  lain. Apa yang terlihat?  Dari percobaan itu dapat disimpulkan bahwa udara memiliki masa dan menempati ruang.



1. Wujud Materi

Dikenal tiga macam wujud materi,  vakni  padat, cair, dangas. Zat padat memiliki bentuk dan volume tetap, selama tidak ada pengaruh_dari luar. Contoh, bentuk dan volume sebatang emas tetap di mana pun emas itu berada.
Berbeda dengan zat padat, bentuk zat cair_berubah-ubah mengikuti bentuk ruang yang ditempatinya. Di dalam gelas, air akan mengambil bentuk ruang gelas; di dalam botol, air mengambil bentuk ruang botol. Seperti zat padat, volume zat cair juga tetap. Gas mengisi seluruh ruanp yang tersedia. Jadi, tidak tetap baik bentuk dan volumenya.

2. Massa dan Berat

Massa suatu benda menyatakan jumlah materi yang ada pada benda tersebut. Massa suatu benda tetap di segala tempat. Massa merupakan_sifat dasar materi yang paling penting.
Massa dan berat sesuatu benda tidak identik, tetapi sering dianggap sama : berat menyatakan gaya gravitasi bumi terhadap benda itu dan bergantung pada letak benda dari pusat bumi. Berat sebuah benda dapat diukur langsung dengan menimbangnya, tetapi masa sebuah benda di bumi dapat dihitung jika diketahui beratnya dan gaya gravitasi di tempat penimbangan itu dilakukan. Untuk itu, dipakailah neraca. Menimbang dengan  neraca_adalah  membandingkan  massa  benda  yang  ditimbang  dengan massa benda lain yang sudah diketahui yakni anak timbangnya. Dua benda yang massanya sama bila ditimbang di tempat yang sama, beratnya akan sama. Karena itu, yang dimaksud dengan berat sebuah benda sebenarnya adalah massanya. Maka, timbul pengertian bahwa massa sama dengan berat.

3. Klasifikasi Materi
Suatu bahan dapat bersifat serba sama (homogen) atau serba aneka (heterogen). Suatu benda yang seluruh bagiannya memiliki sifat-sifat yang sama disebut bahan homogen. Perhatikan larutan gula dalam air. Keseluruh bagian akan kita amati suatu cairan yang agak kekuningan dan bila pada setiap bagian kita ambil untuk dicicipi, terasa manis. Jadi, larutan gula ini bersifat homogen. Larutan memang merupakan  campuran   yang  serba  sama,  sedangkan  tanah  dan  campuran  minyak  dengan  air merupakan campuran heterogen. Termasuk campuran apakah udara?
Suatu bahan yang tersusun dari dua atau lebih zat-zat yang sifatnya berbeda disebut campuran. Komposisi campuran tidak tetap, melainkan bervariasi. Oleh sebab itu, akan kita kenal campuran homogen dan campuran heterogen.
Zat-zat yang ditemukan di alam jarang sekali dalam keadaan mumi. Pada umumnya, ditemukan campuran heterogen. Lihat batu kapur, granit, batu pualam yang ditemukan, akan tampak jelas heterogenitas sifat-sifatnya. Setiap materi yang homogen dan susunan kimianya tetap disebut zat atau substansi. Setiap zat memiliki sifat fisika dan sifat kimia tertentu. Dikenal dua macam zat, yakni unsur dan senyawa.
Kita akrab dengan air. Melalui elektrolisis (peruraian oleh arus listrik), maka air dapat dipisahkan menjadi oksigen dan hidrogen, sedangkan oksigen dan hidrogen melalui reaksi kimia biasa tidak dapat diuraikan lagi.
Zat yang dengan reaksi kimia biasa dapat diuraikan menjadi beberapa zat lain yang lebih sederhana disebut senyawa. Jadi, air adalah senyawa. Zat yang dengan reaksi kimia tidak dapat diuraikan lagi menjadi zat-zat lain disebut unsur. Jadi, oksigen (O) dan Hidrogen (H) adalah unsur. Menurut sifat- sifat, dikenal unsur logam dan nonlogam, Besi, tembaga, dan seng, misalnya, adalah unsur logam, sedangkan arang, belerang dan fosfor adalah contoh unsur nonlogam.

4. Atom dan Molekul
Sejak zaman kuno, filosof-filosof Yunani sudah memikirkan struktur materi. Bertentangan dengan ajaran unsur makrokosmos, pada abad 5 sebelum Masehi, Leukippos dan Demokritos telah mengembangkan ajaran mikrokosmos tentang hebatnya materi.
Demokritos (460-370 SM) menyatakanbahwa struktur zat discontinue dan_bahwa semua materi terdiri atas partikel-partikel yang amat kecil yang disebut atom (a = tidak, tomos = dibagi). Hal ini bertentangan dengan pendapat Aristoteles yang menyatakan bahwa zat bersifat continue (dapat dibagi terus); kedua pendapat itu bersifat sangat spekulatif dan tidak dapat ditunjang oleh eksperimen.
Pada masa Robert Boyle, yakni abad ke-17, para ahli fisika mengembangkan sebuah teori baru tentang struktur materi, yakni  teori  molekul.  Menurut  pendapat  ini,  partikel  terkecil  zat  disebut molekul, dan molekul-molekul zat yang sama akan sama semua sifatnya. Teori ini dapat menerangkan antara lain peristiwa diferensiasi zat, perubahan wujud zat, dan sifat-sifat gas dengan memuaskan.

a.          Teori Atom Dalton
John Dalton (1766-1874), seorang guru sekolah di Inggris, berlandaskan observasi-observasi kuantitatifnya pada awal abad ke-19 mengungkapkan teori atomnya yang terkenal yang dapat menerangkan kejadian-kejadian kimia. Dengan teorinya ini, Dalton mampu menerangkan dua buah hukum dasar ilmu kimia, yakni hukum kekekalan massa dari Lavoisier dan hukum ketetapan perbandingan dari Proust.

Hipotesis Dalton berpangkal dari anggapan Demokritos, kemudian menjadi dasar teori atom antara lain sebagai berikut.
(1)       Tiap-tiap unsur terdiri dari partikel-partikel kecil yang disebut atom. Atom tidak dapat dibagi- bagi.
(2)       Atom-atom unsur yang sama, sifatnya sama, atom dari unsur yang berbeda, sifatnya juga berbeda.
(3)       Atom tidak dapat diciptakan dan dimusnahkan.
(4)       Reaksi kimia terjadi karena penggabungan atau pemisahan atom-atom. (5) Senyawa ialah hasil reaksi atom-atom penyusunnya.
Berdasarkan Uji ini, maka untuk membedakan antara atom unsur yang satu dengan atom unsur yang lain, Berzellius mengembangkan tanda atom. Tanda atom pada umumnya diturunkan dari nama Latin atau Yunani unsur yang bersangkutan dengan mengambil huruf pertama dan seringkah ditambah dengan sebuah huruf lain dalam nama itu.
Kecuali tanda atom, para ahli juga menggunakan Rumus kimia sebagai lambang senyawa atau molekul senyawa. Misalnya air dituliskan H2Q, glukosa C6H12O6’, asam sulfat H4SO4’ dan lain-jain.

5.         Susunan Atom

Untuk menjelaskan berbagai pertanyaan yang masih belum terjawab oleh teori atom, maka orang harus mengetahui susunan atom. Misalnya, pertanyaan tentang apa yang menyebabkan atom-atom terikat bersama -sama sehingga membentuk zat yang lebih kompleks? Mengapa atom suatu unsur dapat bereaksi dengan atom lain, mengapa atom tembaga berbeda dengan atom besi?
Pengetahuan tentang susunan atom menjadi jelas setelah penelitian-penelitian dari SirHumphry Davy dan Michael Faraday, keduanya berasal dari Inggris.

Tabel 1
Daftar Beberapa Unsur
No.
Nama Asing/Indonesia
Tanda Atom
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
23.
Oksigen/Zat asam
Hidrogen/Zat air Carbonium/Zat arang Nitrogen/Zat lemas Phosphor/Zat fosfor Suifur/Zat belerang Natrium
Kalium Calcium Barium Ferum/Zat besi Magnesium Mangan Chlorium Fluorium Aluminium
Silicium/Silikon Cuprum/Tembaga Aurum/Emas Argentum/Perak
Hidrargyrum/Mercurium/Air raksa
Strontium Plumbum/Timbal Uranium
Titanium
0
H C N P S
Na K Ca Ba Fe Mg Mn Cl
F Al Si Cu Au Ag Hg Sr Pb U Ti

a.         Penemuan Elektron dan Proton
Electron merupakan partikel atom pertama yang ditemukan. Penemuan elektrom berawal dari penyelidikan tentang listrik melalui gas-gas pada tekanan rendah.
Joseph John Thomson dan kawan-kawannya telah melakukan percobaan mengenai hantaran listrik melalui berbagai gas dengan menggunakan suatu tabung tertutup yang dapat dihampakan seperti tertera pada Gambar S berikut ini. Pada ujung-ujung tabung_itu_terdapat kutub listrik positif atau anoda dan kutub negative atau katoda.

Bila katoda dan anoda dihubungkan dengan sumber listrik bertegangan tinggi dan tekanan gas di dalam tabung dikurangi menjadi sangal kecil, yaitu sekitar 10-6  atmosfer, akan terjadi pancaran sinar yang berasal dari katoda dan menuju ke anoda. Sinar itu disebut sinar katoda.
Sinar katoda mempunyai sifat cahaya, tetapi sinar itu juga mempunyai sifat-sifat lain. Antara lain, sinar itu dapat menggerakkan baling-baling yang diletakkan dalam jalannya dan di dalam medan listrik sinar itu dibelokkan ke arah pelat elektroda positif.
Sifat-sifat tersebut menunjukkan bahwa sinar katoda terdiri dari partikel-partikel bermuatan listrik negatif. Partikel-partikel sinar katoda dilepaskan oleh atom-atom yang terdapat pada katoda. Pada tahun 1897, J.J. Thomson (1856-1940) membuktikan dengan eksperimen bahwa partikel sinar katoda tidak bergantung pada bahan katoda.  Partikel itu disebut elektron.  Berdasarkan pengamatan ini, dapatlah ditarik kesimpulan bahwa tiap atom unsur tentu mengandung elektron.
Seorang berkebangsaan Jerman bernama E. Goldstein pada, tahun1886 menemukan suatu sinar lain di dalam tabung sinar katoda. Ia menemukan bahwa apabila lempeng tabung katoda itu berlubang- lubang maka gas yang terdapat di belakang katoda akan berpijar.

Pengamatan ini menunjukkan bahwa ada sejenis sinar yang melewati lubang-lubang yang terdapat pada katoda. Sinar ini disebut sinar saluran karena ia melalui saluran yang menghubungkan ruang belakang katoda dengan ruang di antara kedua kutub. Karena sinar tersebut merambat ke katoda, maka timbul  dugaan  bahwa  sinar  itu  terdiri  dari  partikel-partikel  yang  bermuatan  positif.  Dugaan  ini dikuatkan dengan percobaan-percobaan yang menunjukkan bahwa sinar dibelokkan oleh suatu medan magnet dari jalannya yang lurus ke arah kutub magnet dari magnet tersebut.
Percobaan-percobaan selanjutnya, dengan menggunakan berbagai jenis gas, menunjukkan bahwa massa partikel positif dari sinar saluran itu bergantung pada jenis yang digunakan. Partikel positif yang terkecil massanya diperoleh bila gas yang digunakan adalah gas hidrogen partikel yang terkecil ini kemudian disebut proton.

b.         Model Atom
Dalton menggambarkan atom sebagai bola padat yang tidak dapat dibagi lagi. Dengan penemuan elektron, maka (1) Model atom Dalton diganti dengan (2) Model atom Thomson. Menurut Thomson, atom berupa bola bermuatan positif dan pada tempat-tempat didalam bola terdapat elektron-elektron, seperti kismis di dalam roti. Jumlah muatan positif sama dengan jumlah muatan negatif sehingga atom bersifat netral.
Model atom Thomson mulai ditinggalkan ketika Ernest Rutherford pada tahun 1909. yang dibantu oleh Hans Geiger dan Ernest Marsden menemukan bukti-bukti baru tentang_sifat-sifat atom. Bukti - bukti itu diperoleh dari eksperimen yang disebut eksperimen penghabluran sinar alfa

Sinar alfa ialah sinar positif yang dapat dihasilkan dalam tabung sinar katoda yang berisi gas helium, tetapi pada eksperi-men_ini digunakan bahan radioaktif sebagai sumber partikel alfa yang berkecepaian tinggi. Sinar alfa itu diarahkan pada lempeng logam yang sangat tipis.  Pada eksperimen- eksperimen pertama ditemukan bahwa hampir semua partikel melewati lembaran tipis itu tanpa ada penyimpangan dari arah semula, tetapi sebagian kecil partikel ada yang disimpangkan dengan sudut yang  besar,  malahan  ada  yang  disimpangkan  dengan  sudut  yang  hampir  berlawanan.  Untuk menjelaskan fenomena ini, pada tahun 1911 Rutherford mengadakan dugaan bahwa atom niscaya hampir seluruhnya terdiri atas ruang kosong. Hal ini didasarkan pada kenyataan bahwa kebanyakan partikel yang melalui lembaran tipis itu berjalan menuruti garis lurus. Memperhitungkan gaya tolak yang dipergunakan agar terjadi penyimpangan yang besar: Rutherford selanjutnya menduga bahwa ada muatan positif atom dan dengan demikian merupakan massa atom yang terkumpul dalam volume yang sangat kecil yang disebut inti atom (the atomic nucleus). Inti atom harus merupakan bagian yang sangat kecil dari atom, karena hanya sebagian kecil partikel alfa dibelokkan atau dipantulkan dengan sudut yang besar. Di sekeliling inti atom beredar elektron-elektron. Elektron-elektron itu sangat ringan dibandingkan dengan inti atom dan tidak menghalangi jalan partikel alfa yang berkecepatan tinggi. Atom bersifat netral, maka muatan inti sama dengan jumlah muatan elektron yang mengelilingi inti.

Model atom menurut Rutherford dapat digambarkan pada halaman berikut.
Proton merupakan suatu bagian ruang di dalam inti atom yang mengadakan tarik-menarik dengan sejumlah elektron sesuai dengan jumlah muatan inti. Jumlah proton di dalam inti atom disebut nomor atom.
J.J. Chadwick pada tahun 1932 secara kuantitatif telah menyelidiki bagian inti atom yang lain yang bersifat netral. Partikel inti ini disebut netron. Karena terdapat di dalam inti atom, proton dan netron disebut pula nukleon. Jumlah nukleon merupakan nomor massa dari suatu atom.

Contoh: atom Cl memiliki jumlah elektron = jumlah proton = 17.
Nomor massanya = 35, sedangkan jumlah netronnya = 35 - 17 = 18 netron.

Gambar A adalah gambar model atom lama dengan orbit-orbit tetap untuk tiap-tiap elektron. Gambar B adalah gambar model atom yang lebih baru yang menunjukkan suatu daerah ,ang disebut awan elektron di mana elektron-elektron kemungkinan besar berada

c.          Model Atom Bohr
Pola atom Rutherford masih memiliki kelemahan-kelemahan yang serius. Misalnya, terhadap pertanyaan-pertanyaan: Mengapa elektron-elektron yang bermuatan negatif tidak tertarik dan melekat pada inti yang positif?
Menurut teori mekanika klasik tentang cahaya, elektron yang bergerak harus disertai kehilangan tenaga kinetik elektron.  Dengan demikian, kecepatan elektron itu semakin lama semakin berkurang, jaraknya terhadap inti semakin kecil, dan akhirnya elektron itu akan jatuh dan melekat pada inti. Di samping itu, terdapat beberapa pertanyaan yang tidak terjawab. Misalnya, apakah semua atom mempunyai jumlah elektron yangsama banyaknya?  Apabila terdapat banyak elektron dalam sebuah atom, bagaimana elektron-elektron itu disusun? Apakah yang menyebabkan inti dan juga elektron-elektron tidak terlepas satu dari yang lain? Untuk mengatasi kelemahan model atom Rutherford, Bohr mengajukan pendapat yang revolusioner, yang sebagian bertentangan dengan mekanika klasik Newton.
Menurut Bohr, di sekitar inti_ itu hanya mungkin terdapat lintasan-lintasan elektron yang berjumlah terbatas; pada_setiap lintasan itu bergerak sebuah elektron yang dalam gerakannya tidak memancarkan sinar.  Jadi, dalam setiap keadaan station, elektron mengandung jumlah tenaga tetap dan terdapat dalam. Keadaan seimbang yang mantap.
Hal itu digambarkan sebagai berikut.
Pada kulit atom tingkat energi K, L, M, N, dan seterusnya terdapat jumlah maksimum elektron tertentu.
Menurut urutan tingkat energinya : K < L < M < N < 0 < P < Q
Maksimum jumlah elektron pada tiap kulit dirumuskan 2n². Untuk kulit K dengan n = 1 akan terdapat jumlah elektron maksimum 2.1² = 2 elektron.
Bila_pada suatu elektron yang dalam keadaan stationer diberikan energi, maka elektron itu dapat dipindah ke tingkat energi yang lebih tinggi. Keadaan ini disebut keadaan dibangkitkan (tereksitasi) yang bersifat labil. Oleh sebab itu, elektron tersebut akan kembali ke tingkat energi semula dengan memancarkan paket energi radiasi yang di sebut foton atau kuant

B.        Energi

Energi adalah suatu kemampuan untuk melakukan kerja atau kegiatan. Tanpa energi, dunia ini akan diam atau beku. Dalam kehidupan manusia selalu terjadi kegiatan dan untuk kegiatan otak serta otot diperlukan energi. Energi itu diperoleh melalui proses oksidasi (pembakaran) zat makanan yang masuk ke tubuh berupa makanan. Kegiatan manusia lainnya dalam memproduksi barang, transportasi, dan lainnya juga memerlukan energi yang diperoleh dari bahan sumber energi atau sering disebut sumber daya alam (natural resources).
Sumber daya alam itu dibedakan menjadi dua kelompok, yaitu
1.          Sumber daya alam yang dapat diperbarui (renewable) atau hampir tidak dapat habis misalnya: tumbuhan hewan. air, tanah, sinar matahari, angin, dan sebagainya;
2.          Sumber daya alam yang tidak dapat diperbarui (unrenewable) atau habis, misalnya: minyak bumi atau batu bara.

Selanjutnya, secara terinci energi dibedakan atas butir-butir berikut dan perlu diketahui bahwa energi dapat diubah dari suatu bentuk ke bentuk lainnya. Misalnya, energi potensial air (air terjun) dapat diubah menjadi energi gerak, energi listrik, dan seterusnya.

1.         Energi Mekanik

Energi mekanik dapat dibedakan atas dua pengertian. yaitu_energj potensial dan energi kinetik. Jumlah kedua energi itu dinamakan energi mekanik. Setiap benda mempunyai berat, maka baik dalam keadaan diam atau bergerak setiap benda memiliki energi. Misalnya energi yang tersimpan dalam air yang dibendung pada sebuah waduk bersifat tidak aktif dan disebut energi potensial (energi tempat). Bila waduk dibuka, air akan mengalir dengan deras, sehingga energi air menjadi aktif. Mengalirnya air ini adalah dengan energi kinetik (tenaga gerak).
Air waduk pada contoh di atas juga memiliki energi potensial karena letaknya. Semakin tinggi letak air waduk terhadap permukaan air laut, semakin besar energi potensialnya. Secara matematis, kenyataan itu dapat dirumuskan sebagai berikut.
Epotensial            : mgh
m                      : massa benda
g                       : besar gravitasi bumi
h                       : jarak ketinggiannya
Sedangkan besarnya energi kinetik dapat dirumuskan : Ekinetik : ½ m V²
V                      : kecepatan gerak benda
Artinya, suatu benda yang kecepatannya besar akan besar pula energi kinetiknya.

2.         Energi Panas

Energi panas juga sering disebut sebagai kalor. Pemberian panas_kepada suatu benda dapat menvebabkan   kenaikan   suhu   benda_itu_ataupun   bahkan   terkadang   dapat   menyebabkan perubahan bentuk, perubahan ukuran, atau perubahan volume benda itu.
Ada tiga istilah yang penggunaannya sering_kacau, yaitu panas, kalor, dan suhu. Panas adalah salah satu bentuk energi. Energi panas yang berpindah disebut kalor, sementara suhu ada- lah derajat panas suatu benda.
Ketika merebus air berarti energi panas diberikan kepada air, yang berasal dari energi yang tersimpan di dalam bahan bakar kayu atau minyak tanah sehingga suhu air naik. Jika pemberian energi panas diteruskan sampai suhu air mencapai titik didihnya, maka air akan menguap dan berubah bentuk menjadi uap air.
Banyaknya energi panas  yang diberikan dapat dihitung dengan menggunakan hubungan rumus:

Q          = m x c t kalori, di mana 
Q          = menyatakan banyaknya energi panas dalam kalori
m          = menyatakan massa benda / zat yang mendapatkan energy panas
c           = menyatakan kalor jeni s benda/zat yang mendapatkan panas
t            = menyatakan kenaikan (perubahan) suhu.

3.         Energi Magnetik

Energi magnetik dapat dipahami dengan mengamati gejala yang timbul ketika dua batang magnet yang kutub-kutubnya saling didekatkan satu dengan yang lain. Seperti diketahui bahwa setiap magnet mempunyai 2 macam kutub, yaitu kutub magnet utara dan kutub magnet selatan. Jika dua batang magnet kutub-kutubnya yang senama (u - u/s - s) saling didekatkan maka kedua magnet akan saling tolak-menolak. Sebaliknya, kedua magnet akan saling tarik-menarik apabila yang saling berdekatan adalah kedua kutub, tidak senama (u - s).
Kedua kutub magnet memiliki kemampuan untuk saling melakukan gerakan. Kemampuan itu adalah energi yang tersimpan di dalam magnet dan energi inilah yang disebut sebagai energi magnetik. Semakin semakin besar energi magnetik yang dimiliki oleh suatu magnet, semakin besar pula gaya yang ditimbulkan oleh magnet itu.
Pengertian tentang energi magnetik akan bertambah jelas jika dipahami melalui suatu penelitian medan magnet. Di sekitar kutub suatu magnet terdapat medan magnet, yaitu ruangan atau daerah di sekeliling kutub magnet di mana energi magnetik masih dapat dirasakan. Hal ini dapat diperhatikan gejalanya apabila suatu benda kecil maupun suatu magnet yang lemah diletakkan sekitar suatu kutub magnet, maka benda kecil atau magnet yang lemah itu akan bergerak. Ini berarti di sekeliling magnet yang menimbulkan medan magnet ada kemampuan untuk menggerakkan benda lain. Kemampuan tersebut tidak lain adalah energi magnetik. Magnet akan dapat menarik benda lain apabila benda tersebut dalam bentuk magnet. Benda yang dapat menjadi magnet yaitu besi, dan baja.

4.         Energi Listrik

Energi listrik ditimbulkan/dibangkitkan melalui bermacam-macam cara. Misalnya: (1) dengan sungai atau air terjun yang memilikienergi kinetik; (2) dengan energi angin yang dipakai untuk menggerakkan kincir angin; (3) dengan menggunakan accu (energi kimia); (4) dengan menggunakan tenaga uap yang dapat memutar generator listrik; (5) dengan menggunakan tenaga diesel; dan (6) dengan menggunakan tenaga nuklir.
Kegunaan  dan  energi  listrik  dalam  kehidupan  sehari-hari  bajivak  sekali  yang  dapat dirasakan, terutama di kehidupan kota-kota besar, bahkan sebagai penerangan yang sekarang sudah digunakan sampai jauh ke pelosok pedesaan.
Di samping dapat dilihat kegunaannya, maka dapat dilihat energi apa saja yang dapat dihasilkan dari energi listrik. Misalnya untuk menyalakan lampu penerangan di rumah-rumah maka energi listrik diubah menjadi energi cahaya; untuk menggerakkan mesin maka energi listrik diubah menjadi energi mekanik; untuk proses penyepuhan maka energi listrik diubah menjadi energi kimia.
Jelaslah bahwa energi listrik benar-benar mempunyai peranan yang besar, baik di dalam kehidupan rumah tangga maupun di bidang industri dan lain-lain.

5.         Energi Kimia

Yang dimaksud dengan energi kimia ialah energi yang diperoleh melalui suatu proses kimia. Energi yang dimiliki manusia dapat diperoleh dari makanan yang dimakan melalui proses kimia.
Jika kedua macam atom-atom karbon dan atom oksigen, tersebut dapat bereaksi, akan terbentuk molekul baru yaitu karbondioksida. Bergabungnya kedua atom tersebut memerlukan energi. Kalori tersebut dikenal sebagai energi kimia. Bila kedua atom yang telah tergabung dipisahkan, maka akan melepaskan energi. Energi yang terbebas disebut energi eksoterm. Pada reaksi korek api, juga dihasilkan energi panas yang melalui suatu proses kimia.
Bertambah jelaslah  kiranya untuk memahami adanya energi  yang disebut energi kimia melalui pengertian yang disebut reaksi eksoterm di mana berlangsungnya reaksi kimia disertai pembebasan kalori yang disebut energi kimia.

6.         Energi Bunyi

Bunyi dapat juga diartikan  getaran sehingga energi bunyi berarti juga  getaran. Getaran selaras mempunyai energi dua macam, yaitu energi potensial dan energi kinetik. Melalui pemba- hasan secara matematis dapat ditunjukkan bahwa jumlah kedua macam energi pada suatu getaran selaras adalah selalu tetap dan besarnya tergantung massa, simpangan, dan waktu getar atau periode. Untuk contoh yang lebih jelas mengenai adanya energi bunyi atau energi getaran yaitu apabila orang melihayatuhnya. jejiiiah    benda dari ketinggian tertentu. Pndn snnt henda itu jatuh di suatu lantai, energi kinetiknya berubah menjadi energi panas dan juga energi getaran, yaitu timbulnya suatu getaran  pada lantai_yang menimbulkan bunyi. Apabila getaran  yang ditun- jukkan itu sangat besar, akan dapat dirasakan adanya energi getarannya yaitu dengan terlihatnya getaran pada benda-benda lain di sekitarnya. Meledaknya suatu bom, menimbulkan getaran yang hebat dan energi getarannya mampu merobohkan bangunan ataupun memecahkan kaca-kaca yang tebal.
Gendang_telinga manusia juga hanya mampu menerima energi getaran yang ditimbulkan oleh sumber getar yang frekuensi paling rendahnya adalah 16 getaran per detik  (Hertz) dan paling besar 20.000 getaran per detik.

7.         Energi Nuklir

Energi nuklir djdapatkan apabila suatu atom pecah menjadi atom yang lain dan pecahan tersebut disertai pembebasan energi. Satu-satunya sumber energi nuklir yang sangat besar adalah uranium. Di dalam reaksi atom, atom uranium ditembakkan dengan neutron sehingga masuk ke inti uranium dan kemudian pecah. Pecahnya atom uranium disertai pembebasan energi yang amat besar dan dihasilkan juga dua neutron baru. Neutron baru tersebut akan menembaki atom uranium yang lain dan diikuti peristiwa yang sama. Demikian proses itu berlangsung secara terus-menerus dan disebut sebagai berlangsungnya reaksi berantai yang sangat cepat dengan pengeluaran energi yang dahsyat.
Energi nuklir dapat digambarkan seperti energi yang disimpan di dalam arloji ketika arloji itu diputar. Apabila kunci yang menahan pir arloji itu dibuka dengan tiba-tiba, energi yang tersimpan tadi akan keluar semuanya dengan sangat kuat -dan arloji mempunyai kemungkinan dapat menjadi rusak. Apabila energi tersebut dilepaskan dengan perlahan-lahan dan disalurkan melalui gir dan roda-roda serta mekanisme halus lainnya, energi tersebut akan memberi manfaat bagi jalannya arloji. Demikian juga halnya dengan energi nuklir. Apabila tidak dikendalikan dengan baik penggunaannya, energi nuklir akan dapat membinasakan manusia, seperti yang terjadi dalam Perang Dunia Kedua di mana kota Hirosima dan Nagasaki telah dibom atom oleh Amerika Serikat. Namun, dengan maksud menuju suasana damai dan aman, maka energi nukiir itu dapat dimanfaatkan untuk kesejahteraan hidup.
Dalam kemajuan sains dan teknologi akhir-akhir ini, energi nuklir digunakan di antaranya pada kapal bertenaga nuklir, lokomotif bertenaga nuklir, pesawat terbang bertenaga nuklir, pembangkit tenaga listrik, dan juga digunakan untuk keperluan kesehatan.

8.         Energi Cahaya atau Cahaya

Energi cahava terutama cahaya matahari banyak diperlukan terutama oleh tumbuhan yang berhijau   daun. Tumbuhan itu membutuhkan energi cahaya untuk mengadakan proses fotosintesis.
Dengan kemajuan teknologi saat ini dapat juga digunakan energi dari sinar yang dikenal dengan nama sinar laser. Yang dimaksud dengan sinar laser ialah sinar pada suatu gelombang yang sama dan yang amat kuat. Sinar laser banyak sekali digunakan dan meliputi banyak bidang. Misalnva dalam bidang industri besar digunakan dalam pembuatan senjata laser yang dapat menembus baja yang tebalnya 2 cm dan lain-lainnya. Penggunaan sinar laser dalam bidang kesehatan menunjukkan bahwa banyak penyakit-penyakit yang dapat dimusnahkan dengan sinar laser. Sudah bukan menjadi persoalan lagi bagi para ahli yang mempergunakan sinar laser. Seperti halnya perawatan yang berasal dari China yang terkenal dengan Akupuntur, perawatan dengan cara ini telah dimodernisir oleh ahli-ahli dunia Barat.
Baru-baru ini, sebuah perusahaan di Ottenbum telah membuat pesawat istimewa untuk mengadakan akupuntur, yaitu dengan perantaraan sinar laser. Keuntungan akupuntur laser jika dibandingkan dengan akupuntur biasa ialah bahwa waktu perawatan jauh lebih singkat dan jauh lebih ringan. Perawatan dengan laser itu tidak dapat memasukkan hama ke dalam badan. Pengetahuan itu diperoleh dari pengalaman di China yang dikumpulkan dalam ribuan tahun dan saat ini dilengkapi dengan pengetahuan modern tentang ilmu hayat serta ilmu faal tubuh. Dengan demikian, para dokter dapat mengadakan perawatan akupuntur laser yang lebih baik dan lebih lengkap.
Seorang sarjana dari Hongaria yang bernama Meester menemukan bahwa sinar laser yang lemah mempunyai pengaruh yang baik atas proses penyembuhan luka-luka. Sinar laser yang digunakan adalah sebuah pesawat laser gas, sedangkan gas yang dipergunakan untuk tujuan ini adalah helium dan neon.
Di lapangan kedokteran, pemakaian laser di bidang pembedahan kini sudah melalui taraf percobaan. Serombongan dokter yang bekerja dalam klinik Universitas kota Munchen adalah ahli-ahli pertama yang langsung dapat mengeluarkan bengkak-bengkak kanker yang kecil dalam kandungan air kencing.
Bertentangan dengan cara-cara peralatan lama, maka dengan cara yang baru ini bengkak- bengkak yang berbahaya tersebut lebih mudah dibekukan dan dapat secara lebih radikal lagi, walaupun berada di tempat-tempat yang sulit. Suatu segi yang paling mengagumkan dari cara baru ini ialah bahwa orang yang dirawat tidak berdarah sedikit pun. Selain itu, perawatan ini tidak banyak memakan waktu. Bengkak-bengkak yang berbahaya, meskipun terletak di bagian jaringan otot yang dalam, dapat dirusak seluruhnya, dan waktu pasien harus berbaring dalam rumah sakit juga jauh lebih singkat. Dari penyelidikan-penyelidikan yang dilakukan pada para pasien setelah mereka dibedah, terbukti bahwa di sekitar tempat pembekuan itu tidak ditemukan sel-sel kanker lagi.

9.         Energi Matahari

Energi matahari adalah energi yang paling besar dan paling murah di alam ini. Dikatakan murah karena manusia tidak perlu membeli untuk mendapatkan energi matahari itu. Matahari memancarkan energinya dalam bentuk gelombang-gelombang radiasi. Energi yang dipancarkan ini besarnya tidak kurang dari 3,8 x 1033 erg tiap detik. Di antara jumlah energi yang dipancarkan itu,  bumi  hanya  menerima  sedikit  sekali  dibandingkan  dengan  seluruh  jumlah  energi  yang dipancarkan.

Energi matahari dapat dimanfaatkan untuk_berbagai keperluan, diantaranya ialah untuk (1) penggerak satelit buatan (satelit palapa), (2) untuk kompor matahari ,(3) proses fotosintesis pada tumbuhan hijau, (4) penyuling air, dan (5) listrik tenaga surya.

Pertanyaan :

1.         Apakah yang dimaksud dengan zat atau materi?
2.         Apakah beda massa dan berat suatu zat?
3.         Apa arti struktur materi menurut teori continue dan discontinue?
4.         Apakah energi kimia itu? Beri contoh!
5.         Bila kita menjatuhkan suatu benda dari ketinggian tertentu di atas lantai, maka energi potensial dan energi kinetik akan diubah menjadi energi apa saja?
6.         Apakah energi nuklir itu dan bagaimana cara memperolehnya?
7.         Energi sinar mempunyai manfaat dalam berbagai lapangan. Sebutkan manfaat sinar laser dalam kedokteran!


Masih berlanjut.... Bab 3 Alam semesta dan tata surya

DAFTAR PUSTAKA

Jasin Maskoeri, 2009, “Ilmu Alamiah Dasar”, Jakarta : PT Raja Grafindo Persada. Ngili Yohanis, 2010, “BioKimia Dasar”, Bandung : Rekayasa Sains.
Sumardi Yosaphat, 2004, “Konsep Dasar IPA 1” :Materi dan Energi ,Jakarta : Pusat
Penerbitan Terbuka.
Silaban Pantur ditkk, 1985,”Fisika edisi ketiga, Jakarta : Penerbit Erlangga.
Tjasyono Bayong, 2009, “Ilmu Kebumian dan Antariksa : Alam Semesta”, Jakarta : PT Remaja Rosdakarya.